Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
Front Neurol ; 15: 1355862, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529038

RESUMO

Introduction: Genetic Absence Epilepsy Rats from Strasbourg (GAERS) represent a model of genetic generalized epilepsy. The present longitudinal study in GAERS and age-matched non-epileptic controls (NEC) aimed to characterize the epileptic brain network using two functional measures, resting state-functional magnetic resonance imaging (rs-fMRI) and manganese-enhanced MRI (MEMRI) combined with morphometry, and to investigate potential brain network alterations, following long-term seizure activity. Methods: Repeated rs-fMRI measurements at 9.4 T between 3 and 8 months of age were combined with MEMRI at the final time point of the study. We used graph theory analysis to infer community structure and global and local network parameters from rs-fMRI data and compared them to brain region-wise manganese accumulation patterns and deformation-based morphometry (DBM). Results: Functional connectivity (FC) was generally higher in GAERS when compared to NEC. Global network parameters and community structure were similar in NEC and GAERS, suggesting efficiently functioning networks in both strains. No progressive FC changes were observed in epileptic animals. Network-based statistics (NBS) revealed stronger FC within the cortical community, including regions of association and sensorimotor cortex, and with basal ganglia and limbic regions in GAERS, irrespective of age. Higher manganese accumulation in GAERS than in NEC was observed at 8 months of age, consistent with higher overall rs-FC, particularly in sensorimotor cortex and association cortex regions. Functional measures showed less similarity in subcortical regions. Whole brain volumes of 8 months-old GAERS were higher when compared to age-matched NEC, and DBM revealed increased volumes of several association and sensorimotor cortex regions and of the thalamus. Discussion: rs-fMRI, MEMRI, and volumetric data collectively suggest the significance of cortical networks in GAERS, which correlates with an increased fronto-central connectivity in childhood absence epilepsy (CAE). Our findings also verify involvement of basal ganglia and limbic regions. Epilepsy-related network alterations are already present in juvenile animals. Consequently, this early condition seems to play a greater role in dynamic brain function than chronic absence seizures.

2.
J Autoimmun ; 142: 103136, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37935063

RESUMO

K2P2.1 (TREK1), a two-pore domain potassium channel, has emerged as regulator of leukocyte transmigration into the central nervous system. In the context of skeletal muscle, immune cell infiltration constitutes the pathogenic hallmark of idiopathic inflammatory myopathies (IIMs). However, the underlying mechanisms remain to be elucidated. In this study, we investigated the role of K2P2.1 in the autoimmune response of IIMs. We detected K2P2.1 expression in primary skeletal muscle and endothelial cells of murine and human origin. We observed an increased pro-inflammatory cell response, adhesion and transmigration by pharmacological blockade or genetic deletion of K2P2.1 in vitro and in in vivo myositis mouse models. Of note, our findings were not restricted to endothelial cells as skeletal muscle cells with impaired K2P2.1 function also demonstrated a strong pro-inflammatory response. Conversely, these features were abrogated by activation of K2P2.1 and improved the disease course of a myositis mouse model. In humans, K2P2.1 expression was diminished in IIM patients compared to non-diseased controls arguing for the translatability of our findings. In summary, K2P2.1 may regulate the inflammatory response of skeletal muscle. Further research is required to understand whether K2P2.1 could serve as novel therapeutic target.


Assuntos
Células Endoteliais , Miosite , Humanos , Animais , Camundongos , Células Endoteliais/patologia , Miosite/genética , Músculo Esquelético/patologia , Leucócitos/patologia
3.
Exp Neurol ; 371: 114572, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37852467

RESUMO

Cuprizone (CPZ)-induced alterations in axonal myelination are associated with a period of neuronal hyperexcitability and increased activity of hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels in the thalamocortical (TC) system. Substances used for the treatment of multiple sclerosis (MS) have been shown to normalize neuronal excitability in CPZ-treated mice. Therefore, we aimed to examine the effects of diroximel fumarate (DRF) and the sphingosine 1-phospate receptor (S1PR) modulator siponimod on action potential firing and the inward current (Ih) carried by HCN ion channels in naive conditions and during different stages of de- and remyelination. Here, DRF application reduced Ih current density in ex vivo patch clamp recordings from TC neurons of the ventrobasal thalamic complex (VB), thereby counteracting the increase of Ih during early remyelination. Siponimod reduced Ih in VB neurons under control conditions but had no effect in neurons of the auditory cortex (AU). Furthermore, siponimod increased and decreased AP firing properties of neurons in VB and AU, respectively. Computational modeling revealed that both DRF and siponimod influenced thalamic bursting during early remyelination by delaying the onset and decreasing the interburst frequency. Thus, substances used in MS treatment normalize excitability in the TC system by influencing AP firing and Ih.


Assuntos
Fármacos Neuroprotetores , Remielinização , Camundongos , Animais , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Modelos Teóricos
4.
Mol Neurobiol ; 60(12): 7238-7252, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37542648

RESUMO

N-Methyl-D-aspartate receptors (NMDARs) composed of different splice variants display distinct pH sensitivities and are crucial for learning and memory, as well as for inflammatory or injury processes. Dysregulation of the NMDAR has been linked to diseases like Parkinson's, Alzheimer's, schizophrenia, and drug addiction. The development of selective receptor modulators, therefore, constitutes a promising approach for numerous therapeutical applications. Here, we identified (R)-OF-NB1 as a promising splice variant selective NMDAR antagonist. We investigated the interaction of (R)-OF-NB1 and NMDAR from a biochemical, bioinformatical, and electrophysiological perspective to characterize the downstream allosteric modulation of NMDAR by 3-benzazepine derivatives. The allosteric modulatory pathway starts at the ifenprodil binding pocket in the amino terminal domain and immobilizes the connecting α5-helix to the ligand binding domain, resulting in inhibition. In contrast, the exon 5 splice variant GluN1-1b elevates the NMDARs flexibility and promotes the open state of its ligand binding domain.


Assuntos
Benzazepinas , Receptores de N-Metil-D-Aspartato , Ligantes , Benzazepinas/farmacologia , Éxons , Aprendizagem
5.
J Psychiatr Res ; 161: 123-131, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36921500

RESUMO

Controversial studies indicate the adenosine compound (a neuromodulator with neuroprotective activity) intervention on cognitive performance. On the other hand, Japanese sake yeast has been enriched with oral adenosine analogs as a novel natural agent. As the first report, we aimed to evaluate the effects of Japanese sake yeast supplement in a mouse model of chronic restraint stress-induced cognitive dysfunction. Mice were subjected to a one-week stress protocol and concomitantly treated orally with sake yeast at the dose level of 100, 200 and 300 mg/kg once daily for a week. The spatial and conditioned fear memory functions were evaluated with the Morris Water Maze (MWM) and the Passive Avoidance Learning (PAL) test, respectively. In all dosing regimens, improvements in spatial cognition were observed significantly in the MWM. 200 and 300 mg/kg of sake yeast significantly improved short- and long-term fear memory functions in the PAL test. Memory-enhancing effect of sake yeast was potentiated by the injection of ZM241385 (15 mg/kg), a selective adenosine A2A receptor (A2AR) antagonist, but completely disappeared by the injection of 8-cyclopentyltheophylline (CPT-8, 10 mg/kg), a selective adenosine A1 receptor (A1R) antagonist. The findings of the present study demonstrate the efficacy of sake yeast in acting as a cognitive performance-enhancing agent. Eventually, sake yeast and its ingredient S-adenosyl methionine (SAM) may be useful in improving memory in patients suffering from many dementia forms including Alzheimer's disease (AD).


Assuntos
Adenosina , Saccharomyces cerevisiae , Camundongos , Animais , Saccharomyces cerevisiae/metabolismo , Adenosina/farmacologia , Adenosina/uso terapêutico , Bebidas Alcoólicas , Receptor A2A de Adenosina/metabolismo , Receptor A2A de Adenosina/uso terapêutico , Fermentação , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia
6.
Arch Pharm (Weinheim) ; 356(6): e2200665, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36949271

RESUMO

HCN4 channels are considered to be a promising target for cardiac pathologies, epilepsy, and multiple sclerosis. However, there are no subtype-selective HCN channel blockers available, and only a few compounds are reported to display subtype preferences, one of which is EC18 (cis-1). Herein, we report the optimized synthetic route for the preparation of EC18 and its evaluation in three different pharmacological models, allowing us to assess its activity on cardiac function, thalamocortical neurons, and immune cells.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos , Canais de Potássio , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Relação Estrutura-Atividade , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Neurônios/metabolismo
7.
Biol Chem ; 404(4): 355-375, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36774650

RESUMO

Modulation of two-pore domain potassium (K2P) channels has emerged as a novel field of therapeutic strategies as they may regulate immune cell activation and metabolism, inflammatory signals, or barrier integrity. One of these ion channels is the TWIK-related potassium channel 1 (TREK1). In the current study, we report the identification and validation of new TREK1 activators. Firstly, we used a modified potassium ion channel assay to perform high-throughput-screening of new TREK1 activators. Dose-response studies helped to identify compounds with a high separation between effectiveness and toxicity. Inside-out patch-clamp measurements of Xenopus laevis oocytes expressing TREK1 were used for further validation of these activators regarding specificity and activity. These approaches yielded three substances, E1, B3 and A2 that robustly activate TREK1. Functionally, we demonstrated that these compounds reduce levels of adhesion molecules on primary human brain and muscle endothelial cells without affecting cell viability. Finally, we studied compound A2 via voltage-clamp recordings as this activator displayed the strongest effect on adhesion molecules. Interestingly, A2 lacked TREK1 activation in the tested neuronal cell type. Taken together, this study provides data on novel TREK1 activators that might be employed to pharmacologically modulate TREK1 activity.


Assuntos
Canais de Potássio de Domínios Poros em Tandem , Humanos , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Células Endoteliais/metabolismo , Doenças Neuroinflamatórias , Encéfalo/metabolismo , Moléculas de Adesão Celular/metabolismo
8.
Biol Chem ; 404(4): 291-302, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36852869

RESUMO

Tonic current through hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels is influencing neuronal firing properties and channel function is strongly influenced by the brain-specific auxiliary subunit tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b). Since Kv1.2 channels and TRIP8b were also suggested to interact, we assessed brain Kv1.2 mRNA and protein expression as well as the reduction of K+ outward currents by Kv1.2-blocking compounds (Psora-4; tityustoxin-Kα, TsTX-Kα) in different brain areas of TRIP8b-deficient (TRIP8b -/- ) compared to wildtype (WT) mice. We found that transcription levels of Kv1.2 channels were not different between genotypes. Furthermore, Kv1.2 current amplitude was not affected upon co-expression with TRIP8b in oocytes. However, Kv1.2 immunofluorescence was stronger in dendritic areas of cortical and hippocampal neurons. Furthermore, the peak net outward current was increased and the inactivation of the Psora-4-sensitive current component was less pronounced in cortical neurons in TRIP8b -/- mice. In current clamp recordings, application of TsTX increased the excitability of thalamocortical (TC) neurons with increased number of elicited action potentials upon step depolarization. We conclude that TRIP8b may not preferentially influence the amplitude of current through Kv1.2 channels but seems to affect current inactivation and channel localization. In TRIP8b -/- a compensatory upregulation of other Kv channels was observed.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Neurônios , Camundongos , Animais , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Neurônios/metabolismo , Hipocampo/metabolismo , Encéfalo/metabolismo , Oócitos
9.
Biol Chem ; 404(4): 241-254, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36809224

RESUMO

The Phosphatidylinositol 3-phosphate 5-kinase Type III PIKfyve is the main source for selectively generated phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), a known regulator of membrane protein trafficking. PI(3,5)P2 facilitates the cardiac KCNQ1/KCNE1 channel plasma membrane abundance and therewith increases the macroscopic current amplitude. Functional-physical interaction of PI(3,5)P2 with membrane proteins and its structural impact is not sufficiently understood. This study aimed to identify molecular interaction sites and stimulatory mechanisms of the KCNQ1/KCNE1 channel via the PIKfyve-PI(3,5)P2 axis. Mutational scanning at the intracellular membrane leaflet and nuclear magnetic resonance (NMR) spectroscopy identified two PI(3,5)P2 binding sites, the known PIP2 site PS1 and the newly identified N-terminal α-helix S0 as relevant for functional PIKfyve effects. Cd2+ coordination to engineered cysteines and molecular modeling suggest that repositioning of S0 stabilizes the channel s open state, an effect strictly dependent on parallel binding of PI(3,5)P2 to both sites.


Assuntos
Canal de Potássio KCNQ1 , Fosfatidilinositol 4,5-Difosfato , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canal de Potássio KCNQ1/química , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Sítios de Ligação , Mutação , Membrana Celular/metabolismo
10.
Biol Chem ; 404(4): 267-277, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36630596

RESUMO

N-Methyl-D-aspartate receptors (NMDARs) are central for learning and information processing in the brain. Dysfunction of NMDARs can play a key role in the pathogenesis of neurodegeneration and drug addiction. The development of selective NMDAR modulators represents a promising strategy to target these diseases. Among such modulating compounds are ifenprodil and its 3-benzazepine derivatives. Classically, the effects of these NMDAR modulators have been tested by techniques like two-electrode voltage clamp (TEVC), patch clamp, or fluorescence-based assays. However, testing their functional effects in complex human systems requires more advanced approaches. Here, we established a human induced pluripotent stem cell-derived (hiPSC-derived) neural cell system and proved its eligibility as a test system for investigating NMDAR modulators and pharmaceutical effects on human neurons.


Assuntos
Células-Tronco Pluripotentes Induzidas , Receptores de N-Metil-D-Aspartato , Humanos , Neurônios
11.
J Clin Invest ; 133(7)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36719741

RESUMO

Multiple sclerosis (MS) is a progressive inflammatory demyelinating disease of the CNS. Increasing evidence suggests that vulnerable neurons in MS exhibit fatal metabolic exhaustion over time, a phenomenon hypothesized to be caused by chronic hyperexcitability. Axonal Kv7 (outward-rectifying) and oligodendroglial Kir4.1 (inward-rectifying) potassium channels have important roles in regulating neuronal excitability at and around the nodes of Ranvier. Here, we studied the spatial and functional relationship between neuronal Kv7 and oligodendroglial Kir4.1 channels and assessed the transcriptional and functional signatures of cortical and retinal projection neurons under physiological and inflammatory demyelinating conditions. We found that both channels became dysregulated in MS and experimental autoimmune encephalomyelitis (EAE), with Kir4.1 channels being chronically downregulated and Kv7 channel subunits being transiently upregulated during inflammatory demyelination. Further, we observed that pharmacological Kv7 channel opening with retigabine reduced neuronal hyperexcitability in human and EAE neurons, improved clinical EAE signs, and rescued neuronal pathology in oligodendrocyte-Kir4.1-deficient (OL-Kir4.1-deficient) mice. In summary, our findings indicate that neuron-OL compensatory interactions promoted resilience through Kv7 and Kir4.1 channels and identify pharmacological activation of nodal Kv7 channels as a neuroprotective strategy against inflammatory demyelination.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Humanos , Nós Neurofibrosos/metabolismo , Potássio/metabolismo , Neurônios/metabolismo , Oligodendroglia/metabolismo , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo
12.
Free Radic Biol Med ; 194: 337-346, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36521578

RESUMO

Hyperexcitability-induced neuronal damage plays a role both in epilepsy as well as in inflammatory brain diseases such as multiple sclerosis (MS) and as such represents an important disease pathway which potentially can be targeted to mitigate neuronal damage. Dimethyl fumarate (DMF) and its pharmacologically active metabolite monomethyl fumarate (MMF) are FDA-approved therapeutics for MS, which can induce immunosuppressive and antioxidant pathways, and their neuroprotective capacity has been demonstrated in other preclinical neurological disease models before. In this study, we used an unbiased proteomic approach to identify potential new targets upon the treatment of MMF in glio-neuronal hippocampal cultures. MMF treatment results in induction of antioxidative (HMOX1, NQO1) and anaplerotic metabolic (GAPDH, PC) pathways, which correlated with reduction in ROS production, increased mitochondrial NADH-redox index and decreased NADH pool, independent of glutathione levels. Additionally, MMF reduced glycolytic capacity indicating individual intra-cellular metabolic programs within different cell types. Furthermore, we demonstrate a neuroprotective effect of MMF upon hyperexcitability in vitro (low magnesium model), where MMF prevents glio-neuronal death via reduced ROS production. These results highlight MMF as a potential new therapeutic opportunity in hyperexcitability-induced neurodegeneration.


Assuntos
Antioxidantes , Fármacos Neuroprotetores , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , NAD , Proteômica , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo
13.
ChemMedChem ; 18(2): e202200551, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36315933

RESUMO

The Ca2+ activated K+ channel KCa 3.1 is overexpressed in several human tumor cell lines, e. g. clear cell renal carcinoma, prostate cancer, non-small cell lung cancer. Highly aggressive cancer cells use this ion channel for key processes of the metastatic cascade such as migration, extravasation and invasion. Therefore, small molecules, which are able to image this KCa 3.1 channel in vitro and in vivo represent valuable diagnostic and prognostic tool compounds. The [18 F]fluoroethyltriazolyl substituted senicapoc was used as positron emission tomography (PET) tracer and showed promising properties for imaging of KCa 3.1 channels in lung adenocarcinoma cells in mice. The novel senicapoc BODIPY conjugates with two F-atoms (9 a) and with a F-atom and a methoxy moiety (9 b) at the B-atom led to the characteristic punctate staining pattern resulting from labeling of single KCa 3.1 channels in A549-3R cells. This punctate pattern was completely removed by preincubation with an excess of senicapoc confirming the high specificity of KCa 3.1 labeling. Due to the methoxy moiety at the B-atom and the additional oxyethylene unit in the spacer, 9 b exhibits higher polarity, which improves solubility and handling without reduction of fluorescence quantum yield. Docking studies using a cryo-electron microscopy (EM) structure of the KCa 3.1 channel confirmed the interaction of 9 a and 9 b with a binding pocket in the channel pore.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Masculino , Camundongos , Humanos , Animais , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Corantes Fluorescentes , Microscopia Crioeletrônica , Tomografia por Emissão de Pósitrons , Linhagem Celular Tumoral
14.
Biol Chem ; 404(4): 303-310, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36453998

RESUMO

It is known that the thalamus plays an important role in pathological brain conditions involved in demyelinating, inflammatory and neurodegenerative diseases such as Multiple Sclerosis (MS). Beside immune cells and cytokines, ion channels were found to be key players in neuroinflammation. MS is a prototypical example of an autoimmune disease of the central nervous system that is classified as a channelopathy where abnormal ion channel function leads to symptoms and clinical signs. Here we review the influence of the cytokine-ion channel interaction in the thalamocortical system in demyelination and inflammation.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/patologia , Encéfalo/patologia , Inflamação , Canais Iônicos , Citocinas
15.
J Neuroinflammation ; 19(1): 270, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348455

RESUMO

BACKGROUND: Cladribine is a synthetic purine analogue that interferes with DNA synthesis and repair next to disrupting cellular proliferation in actively dividing lymphocytes. The compound is approved for the treatment of multiple sclerosis (MS). Cladribine can cross the blood-brain barrier, suggesting a potential effect on central nervous system (CNS) resident cells. Here, we explored compartment-specific immunosuppressive as well as potential direct neuroprotective effects of oral cladribine treatment in experimental autoimmune encephalomyelitis (EAE) mice. METHODS: In the current study, we compare immune cell frequencies and phenotypes in the periphery and CNS of EAE mice with distinct grey and white matter lesions (combined active and focal EAE) either orally treated with cladribine or vehicle, using flow cytometry. To evaluate potential direct neuroprotective effects, we assessed the integrity of the primary auditory cortex neuronal network by studying neuronal activity and spontaneous synaptic activity with electrophysiological techniques ex vivo. RESULTS: Oral cladribine treatment significantly attenuated clinical deficits in EAE mice. Ex vivo flow cytometry showed that cladribine administration led to peripheral immune cell depletion in a compartment-specific manner and reduced immune cell infiltration into the CNS. Histological evaluations revealed no significant differences for inflammatory lesion load following cladribine treatment compared to vehicle control. Single cell electrophysiology in acute brain slices was performed and showed an impact of cladribine treatment on intrinsic cellular firing patterns and spontaneous synaptic transmission in neurons of the primary auditory cortex. Here, cladribine administration in vivo partially restored cortical neuronal network function, reducing action potential firing. Both, the effect on immune cells and neuronal activity were transient. CONCLUSIONS: Our results indicate that cladribine exerts a neuroprotective effect after crossing the blood-brain barrier independently of its peripheral immunosuppressant action.


Assuntos
Encefalomielite Autoimune Experimental , Encefalomielite , Fármacos Neuroprotetores , Camundongos , Animais , Encefalomielite Autoimune Experimental/patologia , Cladribina/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Imunossupressores/uso terapêutico
16.
Cancers (Basel) ; 14(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36230742

RESUMO

Ewing sarcoma (EwS) is a rare and highly malignant bone tumor occurring mainly in childhood and adolescence. Physiologically, the bone is a central hub for Ca2+ homeostasis, which is severely disturbed by osteolytic processes in EwS. Therefore, we aimed to investigate how ion transport proteins involved in Ca2+ homeostasis affect EwS pathophysiology. We characterized the expression of 22 candidate genes of Ca2+-permeable or Ca2+-regulated ion channels in three EwS cell lines and found the Ca2+-activated K+ channel KCa2.1 (KCNN1) to be exceptionally highly expressed. We revealed that KCNN1 expression is directly regulated by the disease-driving oncoprotein EWSR1-FL1. Due to its consistent overexpression in EwS, KCNN1 mRNA could be a prognostic marker in EwS. In a large cohort of EwS patients, however, KCNN1 mRNA quantity does not correlate with clinical parameters. Several functional studies including patch clamp electrophysiology revealed no evidence for KCa2.1 function in EwS cells. Thus, elevated KCNN1 expression is not translated to KCa2.1 channel activity in EwS cells. However, we found that the low K+ conductance of EwS cells renders them susceptible to hypoosmotic solutions. The absence of a relevant K+ conductance in EwS thereby provides an opportunity for hypoosmotic therapy that can be exploited during tumor surgery.

17.
Arch Pharm (Weinheim) ; 355(12): e2200388, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36161669

RESUMO

The calcium-activated potassium channel 3.1 (KCa 3.1) is overexpressed in many tumor entities and has predictive power concerning disease progression and outcome. Imaging of the KCa 3.1 channel in vivo using a radiotracer for positron emission tomography (PET) could therefore establish a potentially powerful diagnostic tool. Senicapoc shows high affinity and excellent selectivity toward the KCa 3.1 channel. We have successfully pursued the synthesis of the 18 F-labeled derivative [18 F]3 of senicapoc using the prosthetic group approach with 1-azido-2-[18 F]fluoroethane ([18 F]6) in a "click" reaction. The biological activity of the new PET tracer was evaluated in vitro and in vivo. Inhibition of the KCa 3.1 channel by 3 was demonstrated by patch clamp experiments and the binding pose was analyzed by docking studies. In mouse and human serum, [18 F]3 was stable for at least one half-life of [18 F]fluorine. Biodistribution experiments in wild-type mice were promising, showing rapid and predominantly renal excretion. An in vivo study using A549-based tumor-bearing mice was performed. The tumor signal could be delineated and image analysis showed a tumor-to-muscle ratio of 1.47 ± 0.24. The approach using 1-azido-2-[18 F]fluoroethane seems to be a good general strategy to achieve triarylacetamide-based fluorinated PET tracers for imaging of the KCa 3.1 channel in vivo.


Assuntos
Neoplasias , Canais de Potássio Cálcio-Ativados , Animais , Humanos , Camundongos , Radioisótopos de Flúor/metabolismo , Compostos Radiofarmacêuticos/farmacologia , Compostos Radiofarmacêuticos/metabolismo , Distribuição Tecidual , Canais de Potássio Cálcio-Ativados/metabolismo , Relação Estrutura-Atividade , Tomografia por Emissão de Pósitrons/métodos , Neoplasias/metabolismo
18.
Cell Mol Life Sci ; 79(9): 479, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35951110

RESUMO

Blood-brain barrier (BBB) integrity is necessary to maintain homeostasis of the central nervous system (CNS). NMDA receptor (NMDAR) function and expression have been implicated in BBB integrity. However, as evidenced in neuroinflammatory conditions, BBB disruption contributes to immune cell infiltration and propagation of inflammatory pathways. Currently, our understanding of the pathophysiological role of NMDAR signaling on endothelial cells remains incomplete. Thus, we investigated NMDAR function on primary mouse brain microvascular endothelial cells (MBMECs). We detected glycine-responsive NMDAR channels, composed of functional GluN1, GluN2A and GluN3A subunits. Importantly, application of glycine alone, but not glutamate, was sufficient to induce NMDAR-mediated currents and an increase in intracellular Ca2+ concentrations. Functionally, glycine-mediated NMDAR activation leads to loss of BBB integrity and changes in actin distribution. Treatment of oocytes that express NMDARs composed of different subunits, with GluN1 and GluN3A binding site inhibitors, resulted in abrogation of NMDAR signaling as measured by two-electrode voltage clamp (TEVC). This effect was only detected in the presence of the GluN2A subunits, suggesting the latter as prerequisite for pharmacological modulation of NMDARs on brain endothelial cells. Taken together, our findings argue for a novel role of glycine as NMDAR ligand on endothelial cells shaping BBB integrity.


Assuntos
Glicina , Receptores de N-Metil-D-Aspartato , Animais , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Glicina/metabolismo , Glicina/farmacologia , Camundongos , N-Metilaspartato/farmacologia , Receptores de Glicina , Receptores de N-Metil-D-Aspartato/metabolismo
19.
Cell Mol Gastroenterol Hepatol ; 14(6): 1199-1211, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35973573

RESUMO

BACKGROUND & AIMS: The 2-pore potassium channel subfamily K member 9 (KCNK9) regulates intracellular calcium concentration and thus modulates cell survival and inflammatory signaling pathways. It also was recognized as a risk allele for inflammatory bowel disease. However, it remains unclear whether KCNK9 modulates inflammatory bowel disease via its impact on immune cell function or whether its influence on calcium homeostasis also is relevant in intestinal epithelial cells. METHODS: Kcnk9-/- mice were challenged with 3% dextran sulfate sodium (DSS) to induce experimental acute colitis. Primary cultures of intestinal epithelial cells were generated, and expression of potassium channels as well as cytosolic calcium levels and susceptibility to apoptosis were evaluated. Furthermore, we evaluated whether KCNK9 deficiency was compensated by the closely related 2-pore potassium channel KCNK3 in vivo or in vitro. RESULTS: Compared with controls, KCNK9 deficiency or its pharmacologic blockade were associated with aggravated DSS-induced colitis compared with wild-type animals. In the absence of KCNK9, intestinal epithelial cells showed increased intracellular calcium levels and were more prone to mitochondrial damage and caspase-9-dependent apoptosis. We found that expression of KCNK3 was increased in Kcnk9-/- mice but did not prevent apoptosis after DSS exposure. Conversely, increased levels of KCNK9 in Kcnk3-/- mice were associated with an ameliorated course of DSS-induced colitis. CONCLUSIONS: KCNK9 enhances mitochondrial stability, reduces apoptosis, und thus supports epithelial cell survival after DSS exposure in vivo and in vitro. Conversely, its increased expression in Kcnk3-/- resulted in less mitochondrial damage and apoptosis and was associated with beneficial outcomes in DSS-induced colitis.


Assuntos
Colite , Canais de Potássio , Animais , Camundongos , Cálcio/metabolismo , Sobrevivência Celular , Colite/induzido quimicamente , Colite/genética , Células Epiteliais , Canais de Potássio/genética , Camundongos Knockout , Sulfato de Dextrana
20.
Cell Mol Life Sci ; 79(8): 440, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864219

RESUMO

The enterovirus Coxsackievirus B3 (CVB3) is known to be a major source for the development of cardiac dysfunctions like viral myocarditis (VMC) and dilatative cardiomyopathy (DCM), but also results in bradycardia and fatal cardiac arrest. Besides clinical reports on bradycardia and sudden cardiac death, very little is known about the influence of CVB3 on the activity of human cardiac pacemaker cells. Here, we address this issue using the first human induced pluripotent stem cell (hiPSC)-derived pacemaker-like cells, in which the expression of a transgenic non-infectious variant of CVB3 can be controlled dose- and time-dependently. We found that CVB3 drastically changed hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4) distribution and function in hiPSC-derived pacemaker-like tissue. In addition, using HCN4 cell expression systems, we found that HCN4 currents were decreased with altered voltage dependency of activation when CVB3 was expressed. Increased autophagosome formation and autophagosomal HCN4 insertion was observed in hiPSC-derived pacemaker-like cells under CVB3 expression as well. Individual effects of single, non-structural CVB3 proteins were analyzed and demonstrated that CVB3 proteins 2C and 3A had the most robust effect on HCN4 activity. Treatment of cells with the Rab7 inhibitor CID 106770 or the CVB3-3A inhibitor GW5074 led to the recovery of the cytoplasmatic HCN4 accumulation into a healthy appearing phenotype, indicating that malfunctioning Rab7-directed autophagosome transport is involved in the disturbed, cytoplasmatic HCN4 accumulation in CVB3-expressing human pacemaker-like cells. Summarizing, the enterovirus CVB3 inhibits human cardiac pacemaker function by reducing the pacemaker channel plasma membrane density, an effect that can be corrected by pharmacological intervention of endocytic vesicle trafficking.


Assuntos
Bradicardia , Células-Tronco Pluripotentes Induzidas , Bradicardia/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Musculares/genética , Canais de Potássio , Nó Sinoatrial/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA